96 research outputs found

    High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source

    Get PDF
    We demonstrate ultralong-range swept-source optical coherence tomography (OCT) imaging using vertical cavity surface emitting laser technology. The ability to adjust laser parameters and high-speed acquisition enables imaging ranges from a few centimeters up to meters using the same instrument. We discuss the challenges of long-range OCT imaging. In vivo human-eye imaging and optical component characterization are presented. The precision and accuracy of OCT-based measurements are assessed and are important for ocular biometry and reproducible intraocular distance measurement before cataract surgery. Additionally, meter-range measurement of fiber length and multicentimeter-range imaging are reported. 3D visualization supports a class of industrial imaging applications of OCT.National Institutes of Health (U.S.) (R01-EY011289-26)National Institutes of Health (U.S.) (R01 EY013178-12)National Institutes of Health (U.S.) (R01-EY013516-09)National Institutes of Health (U.S.) (R01-EY019029-03)National Institutes of Health (U.S.) (R01-CA075289-15)National Institutes of Health (U.S.) (R01-NS057476-05)National Institutes of Health (U.S.) (R44-CA101067-05)United States. Air Force Office of Scientific Research (FA9550-10-1-0551)United States. Air Force Office of Scientific Research (FA9550-10-1-0063

    Imaging limbal and scleral vasculature using Swept Source Optical Coherence Tomography

    Get PDF
    We demonstrate application of high-speed swept source optical coherence tomography for vessel visualization in the anterior segment of the human eye. The human corneo-scleral junction and sclera was imaged in vivo. Imaging was performed using a swept source OCT system operating at 1050nm wavelength range and 100kHz A-scan rate. The high imaging speed enables generation of 3D depth-resolved vasculature maps. The vessel visualization method revealed the rich vascular system in the conjunctiva and episclera.National Institutes of Health (U.S.) (NIH grant R01-EY011289-25)National Institutes of Health (U.S.) (NIH grant R01-EY013178-11)National Institutes of Health (U.S.) (NIH grant R01-EY01356-06)National Institutes of Health (U.S.) (NIH grant R01 CA075289-15)United States. Air Force Office of Scientific Research (FA9550-10-1-0551)United States. Air Force Office of Scientific Research (FA9550-10-1-0063)Foundation for Polish Science (KOLUMB Programme; KOL/3/2010I

    MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging

    Get PDF
    This paper demonstrates new wavelength swept light source technology, MEMS tunable VCSELs, for OCT imaging. The VCSEL achieves a combination of ultrahigh sweep speeds, wide spectral tuning range, flexibility in sweep trajectory, and extremely long coherence length, which cannot be simultaneously achieved with other technologies. A second generation prototype VCSEL is optically pumped at 980nm and a low mass electrostatically tunable mirror enables high speed wavelength tuning centered at ~1310nm with ~110nm of tunable bandwidth. Record coherence length >100mm enables extremely long imaging range. By changing the drive waveform, a single 1310nm VCSEL was driven to sweep at speeds from 100kHz to 1.2MHz axial scan rate with unidirectional and bidirectional high duty cycle sweeps. We demonstrate long range and high resolution 1310nm OCT imaging of the human anterior eye at 100kHz axial scan rate and imaging of biological samples at speeds of 60kHz - 1MHz. A first generation 1050nm device is shown to sweep over 100nm. The results of this study suggest that MEMS based VCSEL swept light source technology has unique performance characteristics and will be a critical technology for future ultrahigh speed and long depth range OCT imaging.National Institutes of Health (U.S.) (2R44CA10167-05)National Institutes of Health (U.S.) (R01-EY011289-25)National Institutes of Health (U.S.) (R01-EY01356-06)National Institutes of Health (U.S.) (R01-EY013178-11)National Institutes of Health (U.S.) (R01-CA075289-15)United States. Air Force Office of Scientific Research (FA9550-10-1-0063)United States. Air Force Office of Scientific Research (FA9550-10-1-0551)Thorlabs, Inc

    Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography

    Get PDF
    We developed a piezoelectric-transducer- (PZT) based miniature catheter with an outer diameter of 3.5 mm for ultrahigh-speed endoscopic optical coherence tomography (OCT). A miniaturized PZT bender actuates a fiber and the beam is scanned through a GRIN lens and micro-prism to provide high-speed, side-viewing capability. The probe optics can be pulled back over a long distance to acquire three-dimensional (3D) data sets covering a large area. Imaging is performed with 11 μm axial resolution in air (8 μm in tissue) and 20 μm transverse resolution, at 960 frames per second with a Fourier domain mode-locked laser operating at 480 kHz axial scan rate. Using a high-speed data acquisition system, endoscopic OCT imaging of the rabbit esophagus and colon in vivo and human colon specimens ex vivo is demonstrated

    Parafoveal Retinal Vascular Response to Pattern Visual Stimulation Assessed with OCT Angiography

    Get PDF
    We used optical coherence tomography (OCT) angiography with a high-speed swept-source OCT system to investigate retinal blood flow changes induced by visual stimulation with a reversing checkerboard pattern. The split-spectrum amplitude-decorrelation angiography (SSADA) algorithm was used to quantify blood flow as measured with parafoveal flow index (PFI), which is proportional to the density of blood vessels and the velocity of blood flow in the parafoveal region of the macula. PFI measurements were taken in 15 second intervals during a 4 minute period consisting of 1 minute of baseline, 2 minutes with an 8 Hz reversing checkerboard pattern stimulation, and 1 minute without stimulation. PFI measurements increased 6.1±4.7% (p = .001) during the first minute of stimulation, with the most significant increase in PFI occurring 30 seconds into stimulation (p<0.001). These results suggest that pattern stimulation induces a change to retinal blood flow that can be reliably measured with OCT angiography.National Institutes of Health (U.S.) (Grant R01 EY013516)National Institutes of Health (U.S.) (Grant Rosenbaum's P30EY010572)Research to Prevent Blindness, Inc. (United States) (Grant R01-Ey11289-26)United States. Air Force Office of Scientific Research (FA9550-10-1-0551

    Speckle reduction in swept source optical coherence tomography images with slow-axis averaging

    Get PDF
    The effectiveness of speckle reduction using traditional frame averaging technique was limited in ultrahigh speed optical coherence tomography (OCT). As the motion between repeated frames was very small, the speckle pattern of the frames might be identical. This problem could be solved by averaging frames acquired at slightly different locations. The optimized scan range depended on the spot size of the laser beam, the smoothness of the boundary, and the homogeneity of the tissue. In this study we presented a method to average frames obtained within a narrow range along the slow-axis. A swept-source OCT with 100,000 Hz axial scan rate was used to scan the retina in vivo. A series of narrow raster scans (0-50 micron along the slow axis) were evaluated. Each scan contained 20 image frames evenly distributed in the scan range. The imaging frame rate was 417 HZ. Only frames with high correlation after rigid registration were used in averaging. The result showed that the contrast-to-noise ratio (CNR) increased with the scan range. But the best edge reservation was obtained with 15 micron scan range. Thus, for ultrahigh speed OCT systems, averaging frames from a narrow band along the slow-axis could achieve better speckle reduction than traditional frame averaging techniques

    Reproducibility of a Long-Range Swept-Source Optical Coherence Tomography Ocular Biometry System and Comparison with Clinical Biometers

    Get PDF
    Objective To demonstrate a novel swept source optical coherence tomography (SS-OCT) imaging device using a vertical cavity surface-emitting laser (VCSEL) capable of imaging the full eye length and to introduce a method using this device for noncontact ocular biometry. To compare the measurements of intraocular distances using this SS-OCT instrument with commercially available optical and ultrasound biometers. To evaluate the intersession reproducibility of measurements of intraocular distances using SS-OCT. Design Evaluation of technology. Participants Twenty eyes of 10 healthy subjects imaged at the New England Eye Center at Tufts Medical Center and Massachusetts Institute of Technology between May and September 2012. Methods Averaged central depth profiles were extracted from volumetric SS-OCT datasets. The intraocular distances, such as central corneal thickness (CCT), aqueous depth (AD), anterior chamber depth (ACD), crystalline lens thickness (LT), vitreous depth (VD), and axial length (AL), were measured and compared with a partial coherence interferometry device (IOLMaster; Carl Zeiss Meditec, Inc., Dublin, CA) and an immersion ultrasound (IUS) A-scan biometer (Axis-II PR; Quantel Medical, Inc., Cournon d'Auvergne Cedex, France). Main Outcome Measures Reproducibility of the measurements of intraocular distances, correlation coefficients, and intraclass correlation coefficients. Results The standard deviations of the repeated measurements of intraocular distances using SS-OCT were 6 μm (CCT), 16 μm (ACD), 14 μm (AD), 13 μm (LT), 14 μm (VD), and 16 μm (AL). Strong correlations among all 3 biometric instruments were found for AL (r > 0.98). The AL measurement using SS-OCT correlates better with the IOLMaster (r=0.998) than with IUS (r=0.984). The SS-OCT and IOLMaster measured higher AL values than ultrasound (175 and 139 μm, respectively). No statistically significant difference in ACD between the optical (SS-OCT or IOLMaster) and ultrasound methods was detected. High intersession reproducibility of SS-OCT measurements of all intraocular distances was observed with intraclass correlation coefficients >0.99. Conclusions The SS-OCT using VCSEL technology enables full eye length imaging and high-precision, noncontact ocular biometry. The measurements with the prototype SS-OCT instrument correlate well with commercial biometers. The SS-OCT biometry has the potential to provide clinically useful comprehensive biometric parameters for pre- and postoperative eye evaluation.National Institutes of Health (U.S.) (Grant R01-EY011289-27)National Institutes of Health (U.S.) (Grant R01-EY013178-12)National Institutes of Health (U.S.) (Grant R01-EY013516-09)National Institutes of Health (U.S.) (Grant R01-EY019029-04)National Institutes of Health (U.S.) (Grant R44EY022864-01)National Institutes of Health (U.S.) (Grant R01-CA075289-16)National Institutes of Health (U.S.) (Grant R01-NS057476-05)National Institutes of Health (U.S.) (Grant R44CA101067-05)United States. Air Force Office of Scientific Research (Grant FA9550-10-1-0551)United States. Air Force Office of Scientific Research (Grant FA9550-10-1-0063)Thorlabs, Inc

    Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis

    Get PDF
    Aims To investigate swept-source optical coherence tomography (OCT) angiography in the optic nerve head (ONH) and parafoveal regions in patients with multiple sclerosis (MS). Methods Fifty-two MS eyes and 21 healthy control (HC) eyes were included. There were two MS subgroups: 38 MS eyes without an optic neuritis (ON) history (MS −ON), and 14 MS eyes with an ON history (MS +ON). The OCT images were captured by high-speed 1050 nm swept-source OCT. The ONH flow index (FI) and parafoveal FI were quantified from OCT angiograms. Results The mean ONH FI was 0.160±0.010 for the HC group, 0.156±0.017 for the MS−ON group, and 0.140±0.020 for the MS+ON group. The ONH FI of the MS+ON group was reduced by 12.5% compared to HC eyes (p=0.004). A higher percentage of MS+ON eyes had abnormal ONH FI compared to HC patients (43% vs 5%, p=0.01). Mean parafoveal FIs were 0.126±0.007, 0.127±0.010, and 0.129±0.005 for the HC, MS−ON, and MS +ON groups, respectively, and did not differ significantly among them. The coefficient of variation (CV) of intravisit repeatability and intervisit reproducibility were 1.03% and 4.53% for ONH FI, and 1.65% and 3.55% for parafoveal FI. Conclusions Based on OCT angiography, the FI measurement is feasible, highly repeatable and reproducible, and it is suitable for clinical measurement of ONH and parafoveal perfusion. The ONH FI may be useful in detecting damage from ON and quantifying its severity.National Institutes of Health (U.S.) (Clinical and Translational Science Award Grant UL1TR000128)National Institutes of Health (U.S.) (Grant R01 EY023285)National Institutes of Health (U.S.) (Grant R01 EY013516)National Institutes of Health (U.S.) (Grant R01-EY11289)National Institutes of Health (U.S.) (Grant P30EY010572)United States. Air Force Office of Scientific Research (FA9550-10-1-0551)United States. Air Force Office of Scientific Research (FA9550-12-1-0499)German Research Foundation (DFG-HO-1791/11-1)Research to Prevent Blindness, Inc. (United States

    Correction of rotational distortion for catheter-based en face OCT and OCT angiography

    Get PDF
    We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm.National Institutes of Health (U.S.) (R01-EY011289-26)National Institutes of Health (U.S.) (R44-EY022864-01)National Institutes of Health (U.S.) (R01-CA075289-16)National Institutes of Health (U.S.) (R44-CA101067-05)National Institutes of Health (U.S.) (R01-CA178636-02)United States. Air Force Office of Scientific Research (Contract FA9550-10-1-0063)United States. Air Force Office of Scientific Research (Contract FA9550-12-1-0499
    • …
    corecore